Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The spatial content of the (...) formal theories of geometry may depart from spatial perception for two reasons: first, because in geometry, only some of the features of spatial figures are theoretically relevant; and second, because some geometric concepts go beyond any possible perceptual experience. Focusing in turn on these two aspects of geometry, we will present several lines of research on US adults and children from the age of three years, and participants from an Amazonian culture, the Mundurucu. Almost all the aspects of geometry tested proved to be shared between these two cultures. Nevertheless, some aspects involve a process of mental construction where explicit instruction seem to play a role in the US, but that can still take place in the absence of instruction in geometry. (shrink)
The mapping of numbers onto space is fundamental to measurement and to mathematics. Is this mapping a cultural invention or a universal intuition shared by all humans regardless of culture and education? We probed number-space mappings in the Mundurucu, an Amazonian indigene group with a reduced numerical lexicon and little or no formal education. At all ages, the Mundurucu mapped symbolic and nonsymbolic numbers onto a logarithmic scale, whereas Western adults used linear mapping with small or symbolic numbers and logarithmic (...) mapping when numbers were presented nonsymbolically under conditions that discouraged counting. This indicates that the mapping of numbers onto space is a universal intuition and that this initial intuition of number is logarithmic. The concept of a linear number line appears to be a cultural invention that fails to develop in the absence of formal education. (shrink)
Does geometry constitues a core set of intuitions present in all humans, regarless of their language or schooling ? We used two non verbal tests to probe the conceptual primitives of geometry in the Munduruku, an isolated Amazonian indigene group. Our results provide evidence for geometrical intuitions in the absence of schooling, experience with graphic symbols or maps, or a rich language of geometrical terms.
Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...) or 5. Our results imply a distinction between a nonverbal system of number approximation and a language-based counting system for exact number and arithmetic. (shrink)
All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics education. (...) By comparing Mundurucú subjects with and without access to schooling, we found that education significantly enhances the acuity with which sets of concrete objects are estimated. These results indicate that culture and education have an important effect on basic number perception. We hypothesize that symbolic and nonsymbolic numerical thinking mutually enhance one another over the course of mathematics instruction. (shrink)
Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...) a successor function and the fact that equality between numbers can be defined in an exact fashion. We discuss some recent findings assessing how speakers of Munduruc (an Amazonian language), and young Western children (3-4 years old) understand these fundamental properties of numbers. (shrink)
What Stanislas Debaene dubs "the number sense" is a natural ability humans share with other animals, enabling us to "count" to four virtually instantaneously. This so-called "accumulator" provides "a direct intuition of what numbers mean". Beyond four, our ability to perceive numbers becomes approximate, though concepts enable us to move beyond approximation. Because humans typically learn number concepts in early childhood, we easily forget that our brains retain the number sense throughout life. This book examines the biological basis for (...) this intuitive ability, with nine chapters organized into three readily graspable groups of three. Aside from its frustrating lack of a clear referencing system, the book is a pleasure to read. (shrink)
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that (...) are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. (shrink)
Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event (...) depicting a division transformation of halving, in which pairs of objects turned into single objects, reducing the array's numerical magnitude. Then they were tested on their ability to calculate the outcome of this division transformation with other large-number arrays. The Mundurucu children effected this transformation even when non-numerical variables were controlled, performed above chance levels on the very first set of test trials, and exhibited performance similar to urban children who had access to precise number words and a surrounding symbolic culture. We conclude that a halving calculation is part of the suite of intuitive operations supported by the ANS. (shrink)
The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to ‘tinker’, i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state (...) life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles. (shrink)
Des branches entières des mathématiques sont fondées sur des liens posés entre les nombres et l’espace : mesure de longueurs, définition de repères et de coordonnées, projection des nombres complexes sur le plan… Si les nombres complexes, comme l’utilisation de repères, sont apparus relativement récemment (vers le XVIIe siècle), la mesure des longueurs est en revanche un procédé très ancien, qui remonte au moins au 3e ou 4e millénaire av. J-C. Loin d’être fortuits, ces liens entre les nombres et l’espace (...) reflèteraient une intuition fondamentale, universelle, façonnée au cours des millénaires par la sélection naturelle, et qui aurait servi de guide et d’inspiration aux mathématiciens au fil des siècles. (shrink)
Article Authors Metrics Comments Media Coverage Abstract Author Summary Introduction Results Discussion Supporting information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to (...) predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. (shrink)
Albert Einstein once made the following remark about "the world of our sense experiences": "the fact that it is comprehensible is a miracle." (1936, p. 351) A few decades later, another physicist, Eugene Wigner, wondered about the unreasonable effectiveness of mathematics in the natural sciences, concluding his classic article thus: "the miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve" (1960, p. 14). (...) At least three factors are involved in Einstein's and Wigner's miracles: the physical world, mathematics, and human cognition. One way to relate these factors is to ask how the universe could possibly be structured in such a way that mathematics would be applicable to it, and we would be able to understand that application. This is roughly Wigner's question. Alternatively, the way of the mathematical naturalist is to argue that we abstract certain properties from the world, perhaps using our bodies and physical tools, thereby articulating basic mathematical concepts, which we continue building into the complex formal structures of mathematics. John Stuart Mill, Penelope Maddy, and Rafael Nuñez teach this strategy of cognitive abstraction, in very different manners. But what if the very concepts and basic principles of mathematics were built into our cognitive structure itself? Given such a cognitive a priori mathematical endowment, would the miracles of the link between world and cognition (Einstein) and mathematics and world (Wigner) not vanish, or at least significantly diminish? This is the stance of Stanislas Deheane and Elizabeth Brannon's 2011 anthology, following a venerable rationalist tradition including Plato and Immanuel Kant. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.